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Graphical Presentation of the Copolymerization 
Equation and of Conversion in Batch Copolymerization 

The Copolymerization Equation 

The copolymerization equation (ref. 1-3), which relates instantaneous copolymer com- 
position to instantaneous reactor composition and reactivity ratios for a free-radical co- 
polymerization, may be given in the form: 

2 1 2  = (11212 + 1)/[(r2/212) + 11 (1) 

where r1 and r2 are the two reactivity ratios, and 2 , s  and 212 are polymer and reactor 
compositions expressed as mole ratios of monomer 1 to monomer 2. It is the purpose of 
this paper to point out a particularly useful and simple method of plotting this relation. 
Further, it will be shown how this plot may be used to follow reactor and copolymer com- 
position changes with conversion in a batch reaction. 

The two variables y and z are defined as 

y = In Z12 (2.4) 

z = In 212 (2B) 

where y and z may be thought of as relative polymer and reactor compositions. In  terms 
of these variables the copolymerization equation (1) becomes: 

A plot of this function for a given r1 and r2 has a number of interesting and useful charac- 
teristics. 

( a )  The function has an upper and a lower asymptote, both of which have unit slope. 
If yu designates the upper and yL the lower asymptote, their equations are: 

(4A) 

(4B) 
( b )  The y and z intercepts of the upper asymptote occur at In r1 and In (l /rl)  and for 

the lower asymptote a t  In (1/r2) and In r2. 

( e )  The distance from the z intercept of the lower asymptote to the z intercept of the 
upper asymptote is -In p ,  where p is the product of reactivity ratios, rlr2. 

( d )  The function itself has an z intercept of In (r2/r1), which is midway between the 
z intercepts of the two asymptotes. Further, this point is at the inflection of the curve 
and is a center of symmetry, i.e., y(U) = -y( -U), where U = z - z, and z, = l/2 111 

( r h ) .  
( e )  The slope of the function at  the inflection (which corresponds to 1 : l  copolymer 

composition) is: 

(5) 

The above characteristics are shown in Figure 1. It may be noted that the shape of the 
curve is completely determined by the product of reactivity ratios, p ,  whereas the place- 
ment of the curve along the z axis is determined by the quotient of reactivity ratios, 
q = r2/rll or more precisely, di. 

The shape of the curve falls into one of three forms, depending on whether p is less 
than, equal to, or greater than one. p less than one corresponds to a point below the 

yu = In rl + z 

yL = -In r2 + z 

( d y l d z ) ,  = 2/[1 + (l/di)l 
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downward sloping diagonal line in Figure 2, which displays the In rl, I n  r2 plane. This 
form might be called t,he “chair” form and is the form shown in Figure 1. It is charac- 
terized by a slope at the inflection between 0 and 1 and by the upper asymptote intercept- 
ing the z axis to the right of the lower asymptote x intercept. The case of p = 1 is a de- 

I 

lower arymp 1” ot 

slope = 1 3 

cross 

/’ 
/‘ 

‘I 

/&upper asymptote 
slope 8 I 

// 

I1 io 
z,*, REACTOR COMPOSITION, LOG SCALE 

Fig. 1. Geometry of the copolymerization equation. 
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Fig. 2. The In rl, In r2 plane. 
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generate case for which t.he two asymptotes and the function itself coincide in a single 
straight line (linear form). The r1, 7-2 pairs which yield this case are points on the diag- 
onal line in Figure 2. The third form ( p  > 1) might be called the "S" form and results 
from TI ,  7-2 pairs above the diagonal in Figiire 2. The slope at the inflection is between 1 
and 2 and the r intercept, of the upper asymptote is to the left, of the lower asymptote z 
intercept,. 

If one places a line of unit slope through the origin of the 2-y plot, the intersection wit,h 
the composition funct,ion, if present., corresponds to t,he axeotrope. This point a t  which 
the reactor and polymer composit.ions are equal is somet,imes called t,he crossover point 
and occiirs at a composit,ion of ZIP  = z12C = (1 - r2)/( 1 - T I ) .  The crossover is present 
when TI and r2 a1e in quadrants I and I11 and absent when they are in I1 and IV of 
Figure 2. At any point. on the composition fonction which is below the unit slope line 
through the origin, the direction of composition change in a batch reactor is to the right., 
and at, points above t,he line, to the left. 

A plot. of experimental data from steady-state continiious or low-conversion batch re- 
actions in the form y versus z provides simple visual estimates of the two reactivity ra- 
tios (the y and z intercepts of the upper and lower asymptotes) once the geometry of t,he 
curve in t,hese coordinates is understood. These visual estimates may be used as initial 
est,imates for a more precise determination of r1 and TZ using the nonlinear least-squares 
techniques described iii ref. 4. 

Conversion in Batch Copolymerization 

of t.he init,ial moles of monomer 1 and 2 which have reacted, then 
In  a batch copolymerization one may define the molar conversion, C,  as the fract.ion 

1 - C = (ml + mz)/(m~" + mr") = + 1)/(~1z" + l ) I ( m z / m ~ ~ )  (6) 

where the 
yields: 

superscript indicates initial conditions. Taking the In of both sides of (6) 

(7) 
The integrated form of the copolymerization equation of blayo and Lewis (Equation 11 
of ref. 2) which is valid if both TI  and 7-2 are not one is: 

In (1 - C )  = In [(ZIZ + 1)/(%12" + 1)l + In ( m ~ / m ~ " )  

( (1 ) ( 8 )  
- T z )  - (1 - r1kz 1 - r1r2 

Elimination of In ( n t ~ / m 2 ~ )  between (7) and (8) gives the following equation for molar 
conversion as a function of the initial and current. reactor compositions and the reactivity 
ratios: 

l n ( 1  - C )  = In (i::;:) - + e Z l n  (3) 

This is also equivalent to Meyer and Lowry's equation 1 (ref. 5) .  
ri = 1,r2 # 1 and TI # 1, 7-2 = 1 have been solved by Meyer and Lowry. 
ism of this paper their equations 2 of Appendix I and I1 become: 

The special cases of 
In the symbol- 

212 - 212" 

1 - 7-2 
7-1 = 1, r2 # 1 (9B) 

and 

TI # 1,  Tz = 1 (9C) 
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Fig. 3. Copolymer composition and conversion as a fuiiction of reactor composition. 

The final case of rl = r2 = I is trivial, since the reaction can proceed to 100% conversion 
from any starting composition with no change in reactor or polymer compositions, i.e., 
2 1 2  = 212 = 212O = Z1z0. 

I n  order to display the conversion behavior graphically, the conversion function, 
~ ( z I z ) ,  is defined as follows: 

r2 

1 - rz 

1 - rlrz 
( 1  - rl)(l - r2) 

lnf(z1d = In (212 + 1) + - 111 212 

In - T ? )  - (1 - ~ ~ ) z ~ ~ \  

lnf(z12) = In (212 + 1) + - In 212 + - 

- 

r2 212 

1 - rz 1 - r2 

Inf(zl2) = In (212 + 1) - - 1 111 212 + (-q(;) 1 - r1 
1 - rl 

Comparison of equations 9 and 10 shows that: 

In (1 - C) = lnf(z12) - Iiif(zl~") 

This property provides a useful basis for displaying conversion as a function of reactor 
cornposition and of polymer composition when combined with the copolymer equation 
plot. One simply plots the conversion function on the same figure as the copolymer 
equation, using logarithmic scales for z12 andf(zl~). Both curves use the same abscissa, 
z = In zI2, but their ordinate scales differ. A "floating" ordinate scale is associated with 
the conversion function. Once the initial react,or composition, z1z0, is given, the zero of 
this scale is placed a t  the ordinate corresponding to the zlz0 abscissa. By this means the 
same curve may be used for any initial reactor composition. The floating ordinate scale, 
which is logarithmic in 1 - C may be labeled with per cent conversion. One decade 
in f(z12) corresponds to one decade in 1 - C. 

The conversion function was plotted using the ex- 
treme right scale. In use, the floating per cent conversion scale is used, after vertical 
displacement of its zero to the ordinate on the conversion function corresponding to the 

Figure 3 illustrates this procedure. 
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desired initial reactor composition. For example, with a 1 : 1 initial reactor composition, 
the per cent conversion scale is moved up to the level of point A on the conversion func- 
tion. The initial polymer composition, 0.74, is found from point B.  The reactor com- 
position at any desired conversion may be determined from the conversion function. At 
90% conversion, point C, the reactor Composition is about 13. The polymer composition 
a t  this conversion is 1.5, from point D. 

If neither r1 nor rz is one, the conversion function on this logarithmic plot approaches 
linearity at sufficiently high and sufficiently low reactor compositions. For high 212, the 
limiting slope, d 111 (1 - C ) / d  In z12, is -rl/( l  - TI), and for low Z~Z, the limiting slope is 
r2/(  1 - rz). The conversion function necessarily increases without limit as the azeo- 
trope or crossover point is approached at  a reactor composition of ( 1  - n)/(  1 - TI). 

If rl is 0.5 the limiting slope becomes - 1 at high zI2, and if r2 is 0.5 the limiting slope 
becomes 1 at low 212. The limiting slope of unity implies that a decade change in 1 - 
C corresponds to a decade change in reactor or polymer composition. Values of the 
reactivity ratios less than or greater than 0.5 have limiting slopes, respectively, less 
than on greater than unity (in absolute value). The absolute value of the limiting slope 
increases without limit as the reactivity ratio approaches one from either side and it 
approaches one from above as the reactivity ratio increases without limit. With re- 
spect to “homopolymerization” during the final stages of polymerization, the value of 
0.5 for a reactivity ratio does not seem to have quite such a critical nature as the limiting 
behavior of (dm/mo)/dF1 as F ,  approaches one, reported by Meyer and Lowry, ref. 5, 
might suggest. 

A more practical approach to the question of “homopolymerization” at some stage of 
the reaction might be to arbitrarily specify some polymer mole ratio which one was 
willing to accept as essentially homopolymer, and to then determine the conversion which 
yielded this polymer composition for s3me specific initial reactor composition. When 
viewed in this manner, valties of the reactivity ratio greater than 0.5 (but excluding 1 )  
may produce “homopolymer,” and conversely, for values less than 0.5 the conversion at 
which “homopolymer” occurs may be so far beyond the conversion to which the reaction 
will be taken that homopolymerization will be no problem. 
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